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Abstract
Quantitative structure-activity relationship (QSAR) studies have been performed on piperidine derivatives (n ¼ 119) as
CCR5 antagonists. The whole data set was divided into a training set (75% of the dataset) and a test set (remaining 25%) on
the basis of K-means clustering technique. Models developed from the training set were used to assess the predictive potential
of the models using test set compounds. Initially classical type QSAR models were developed using structural, spatial,
electronic, physicochemical and/or topological parameters using statistical methods like stepwise regression, partial least
squares (PLS) and factor analysis followed by multiple linear regression (FA-MLR). Using topological and structural
parameters, FA-MLR provided the best equation based on internal validation (Q 2 ¼ 0.514) but the best externally validated
model was obtained with PLS (R2

pred ¼ 0.565). When structural, physicochemical, spatial and electronic descriptors were
used, the best Q 2 value (0.562) was obtained from the stepwise regression derived model whereas the best R2

pred value (0.571)
came from the PLS model. When topological descriptors were used in combination with the structural, physicochemical,
spatial and electronic descriptors, the best Q 2 and R2

pred values obtained were 0.530 (stepwise regression) and 0.580 (PLS)
respectively. Attempt was made to develop 3D-QSAR models using molecular shape analysis descriptors in combination with
structural, physicochemical, spatial and electronic parameters. Linear models were developed using genetic function
algorithm coupled with multiple linear regression. However, the results from the 3D-QSAR study were not superior to those
of the classical QSAR models. Finally, artificial neural network was employed for development of nonlinear models. The ANN
models showed acceptable values of squared correlation coefficient for the observed and predicted values of the test set
compounds. From the view point of external predictability, selected ANN models were superior to the linear QSAR models.
All reported models satisfy the criteria of external validation as recommended by Golbraikh and Tropsha (J Mol Graphics
Mod 2002; 20: 269–276), whereas the majority of the models have modified r2 (r2

m) value of the test set for external validation
more than 0.5 as suggested by Roy and Roy (QSAR Comb Sci 2008; 27: 302-313).

Keywords: QSAR, CCR5 antagonist piperidines

Introduction

Acquired immunodeficiency syndrome is one of the

deadliest diseases in the world. This opportunistic

infection (T4 cell falls below 200/mL) has no

complete and successful treatment so far. Human

immunodeficiency virus, a retrovirus of lentivirus

family is the causative organism of this disease. About

2.9 million people including 3,80,000 children under

15 years died of AIDS in the year of 2006. In that

year 4.3 million people have been newly infected with

HIV virus and total numbers of HIV infected persons

in the world are about 39.5 million till 2006 [1].

There are two serotypes of HIV virus that can be

distinguished genetically and antigenetically. HIV-1

causes more serious and rapid infection than HIV-2.

Gag, pol and env genes are the key elements of this

viral structure. The gag gene is “group specific
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antigen” composed of viral nucleocapsid. It is

responsible for development of virus in the absence

of pol and env genes. The pol gene codes for HIV

enzymes like reverse transcriptase, protease and

integrase. Finally the env gene codes for the two

major glycoproteins (gp120 and gp4) of the viral

envelope [2]. After entering into the blood stream

this virus binds its glycoprotein (gp120) to a T4 cell’s

or macrophage’s CD4 receptor and the coreceptor

CCR5 and/or CXCR4. Binding to CD4 stimulates a

conformational change to form and expose the

binding site of coreceptor [3]. When virus binds to

the coreceptor site, the rearrangement in that binding

site occurs in such a way that fusion between the viral

envelope and the cell membrane can take place. CCR

or chemokine receptors are cell surface molecules.

These bind peptide ligands called chemokine, thereby

inducing migration of the receptor-bearing cells

toward injured tissues. The injured tissues secrete

chemokines into bloodstream [4]. Though in vitro

this virus has been shown to use many coreceptors

including CCR1, CCR2b, CCR3, CXCR6, CCR8,

CX3CR1/V28, gpr1, gpr15, APJ, ChemR23 and

RDC1 but in vivo the main coreceptors for infection

are CCR5 and CXCR4 [3]. CCR5 permits entry of

M-tropic HIV strains (R5) that predominate during

early stages of the infection and are responsible for

transmission of HIV-1. Individuals with a homo-

zygous 32-bp deletion in the CCR5 gene are highly

resistant to HIV-1 infection whereas heterozygous

deletion may decelerate disease progression [5]. On

the other hand CXCR4 is used as coreceptor by T-

tropic HIV-1 strains appearing later in the disease

course. This phenomenon accelerates disease pro-

gression. Genetic alterations of the CCR5 gene also

control infection and disease progression. Depending

on the properties of CCR5 and its interaction with

HIV-1 gp120, there are two ways to inhibit the

binding of HIV-1 to CCR5. Firstly sterical hindrance

of gp120 binding to CCR5 can be achieved with

modified or unmodified chemokines, mAbs or small

molecular ligands. Secondly, internalization of CCR5

leads to the disappearance of CCR5 from the cell

surface. Although CD4 is the primary receptor for

HIV-1 virus, this is not efficient target for drug

discovery. The fact is that binding of soluble CD4 to

HIV-1 gp120 directly enables gp120 interaction with

chemokine coreceptors independent of cellular CD4.

CCR5 deficient individuals have no apparent

immunologic defect. For these reason CCR5 con-

stitutes very attractive target for drug development.

Predictive models have been developed using

molecular modeling and multistep-docking procedure

for HIV-1 entry inhibitor neomycin-arginine conju-

gates interaction with the CD4-gp120 binding site [6].

Liu et al used an approach combining protein

structure modeling, docking and molecular dynamics

simulation to build a series of structural models

of the CCR5 in complexes with gp120 and CD4 [7].

Roy et al. have developed linear free energy related

(LFER) model of Hansch and compared it with 3D-

QSAR analyses (RSA, MSA and MFA) to find out the

important molecular features of 3-(4-benzylpiperidin-

1-yl)-N-phenylpropylamine derivatives for CCR5

binding affinity [8]. Comparative molecular field

analysis and comparative molecular similarity indices

studies of the derivatives of 1-(3,3-diphenylpropyl)-

piperidinyl amide and urea as CCR5 receptor

antagonists have been also reported [9]. Xu et al.

have used an approach combining protein structure

modeling, molecular dynamics simulation, automated

docking and 3D QSAR analyses to investigate the

detailed interactions of CCR5 with 1-amino-2-

phenyl-4-(piperdin-1-yl)-butane derivatives [10].

Song et al. have compared the results obtained from

CoMFA and CoMSIA on a series of piperidine-based

CCR5 antagonists as an alternative approach to

investigate the interaction between CCR5 antagonists

and their receptor [11]. QSAR of CCR5 binding

affinity of 1-(3,3-diphenylpropyl)-piperidinyl pheny-

lacetamides using elimination selection-stepwise

regression method has been reported by Afantitis

et al. [12].

The present group of authors [8,13–21] has

developed some anti-HIV QSAR models using

compounds of different chemical classes and

different types of descriptors. In continuation of

such efforts, the present paper deals with predictive

modeling of CCR5 binding affinity of piperidine

derivatives reported by Finke et al. [22–25]. Some

compounds were excluded from our study due to

lack of quantitative activity data. Initially classical

type QSAR models have been developed using

multiple linear regression (with stepwise regression,

factor analysis as variable selection technique) and

partial least squares. This was followed by an

attempt to develop 3D-QSAR models using mol-

ecular shape analysis descriptors along with struc-

tural, electronic, spatial and physicochemical

descriptors with genetic function approximation as

the statistical tool. Finally nonlinear models have

also been developed using feed-forward backpropa-

gation artificial neural network. The purpose of the

present study is to develop predictive QSAR models

with good validation characteristics for the CCR5

inhibitor piperidine derivatives and for this purpose

different chemometric tools have been applied using

different classes of descriptors for model develop-

ment and comparison.

Methods and materials

The CCR5 binding affinity data (IC50) of 119

piperidine derivatives [22–25] were converted to

logarithmic scale [pIC50 ¼ 2 logIC50 (mM)] and

then used for the QSAR study. There were total 154
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piperidine derivatives in the source papers [22–25].

35 compounds were excluded from our study due to

lack of exact numerical activity values and infrequent

occurrence of particular structural features. Thus, 119

compounds were selected in our study which are shown

in Tables I to IV. In cases of racemic compounds

(Tables I and II), only S configuration has been

considered for modeling because the R isomers are less

potent [22,23].

Descriptors

Three types of analyses were performed: Classical type

QSAR modeling, 3D-QSAR modeling and nonlinear

Table I. Structure and CCR5 binding affinities of sulfonyl derivatives of piperidine containing compounds.

S

N

O
(n)

N

CH3

S

R2

O O

R1

Structural Features Anti-HIV Activity (2 logIC50(mM))

Sl. No. Number of oxygen atom (n) R1 R2 obs cala calb calc cald

1 0 (S)-3,4 diCl-phenyl Phenyl 3.000 3.829 3.659 3.834 3.752

2 1 (S)-3,4 diCl-phenyl Phenyl 4.456 3.984 3.919 3.890 3.928

3 2 (S)-3,4 diCl-phenyl Phenyl 4.000 4.072 4.063 3.580 3.920

4 1 (S)-3,4 diCl-phenyl 2-Thienyl 4.222 3.886 3.762 3.652 3.697

5 2 (S)-3,4 diCl-phenyl 2-Thienyl 3.921 3.867 4.007 3.368 3.683

6 1 (S)-3,4 diCl-phenyl N-dimthyl 3.469 3.750 3.898 3.325 3.590

7* 1 (S)-3,4 diCl-phenyl Benzyl 3.229 4.319 4.263 4.021 4.119

8 1 (S)-3,4 diCl-phenyl Methyl 3.071 3.375 3.581 2.948 3.314

9 1 (S)-3,4 diCl-phenyl n-Octyl 2.854 4.462 4.548 4.240 4.795

10 1 (S)-3,4 diCl-phenyl Cyclopentyl 4.000 3.876 3.857 3.482 3.815

11* 1 (S)-3,4 diCl-phenyl Cyclohexyl 4.000 4.044 3.717 3.793 4.014

12 1 (S)-3,4 diCl-phenyl 2-Cl-phenyl 4.097 4.044 3.693 3.814 4.025

13 1 (S)-3,4 diCl-phenyl 3-Cl-phenyl 4.155 4.099 4.099 3.804 4.047

14 1 (S)-3,4 diCl-phenyl 4-Cl-phenyl 4.398 4.131 4.122 3.876 4.052

15 2 (S)-3,4 diCl-phenyl 3-NO2-phenyl 3.824 4.554 4.809 3.989 4.169

16* 2 (S)-3,4 diCl-phenyl 4-NO2-phenyl 4.222 4.595 4.969 3.968 4.254

17* 1 (S)-3,4 diCl-phenyl 4-MeO-phenyl 4.398 4.294 4.212 4.093 4.259

18 1 (S)-3,4 diCl-phenyl 4-Phenyl-phenyl 4.398 4.579 4.572 4.638 4.591

19 1 (S)-3,4 diCl-phenyl Naphth-1-yl 3.444 3.855 3.386 4.342 3.901

20 1 (S)-3,4 diCl-phenyl Naphth-2-yl 4.222 4.098 4.264 4.222 4.073

21* 1 (S)-3,4 diCl-phenyl Indan-5-yl 4.155 4.302 3.998 4.015 4.225

22 1 (S)-3,4 diCl-phenyl Pyridin-3-yl 4.000 3.879 3.805 3.882 3.826

23 1 (S)-3,4 diCl-phenyl Quinolin-8-yl 4.046 3.965 3.585 4.473 4.096

24 1 (S)-3,4 diCl-phenyl Quinolin-3-yl 3.921 4.152 4.140 4.336 4.035

25* 1 (S)-3,4 diCl-phenyl 1-Me-Imidazol-4-yl 3.469 4.060 3.813 3.760 3.866

26 0 (R/S)-phenyl Phenyl 3.347 3.572 3.599 3.759 3.594

27 1 (R/S)-phenyl Phenyl 4.456 3.872 3.875 3.889 3.606

28 2 (R/S)-phenyl Phenyl 4.523 3.883 3.690 3.853 3.693

29 1 (R/S)-2-Cl-phenyl Phenyl 2.699 3.857 3.583 3.861 3.692

30 2 (R/S)-2-Cl-phenyl Phenyl 2.886 3.886 3.521 3.634 3.690

31 0 (S)-3-Cl-phenyl Phenyl 3.569 3.674 3.497 3.910 3.638

32 1 (S)-3-Cl-phenyl Phenyl 5.000 4.029 4.106 3.949 3.808

33 2 (S)-3-Cl-phenyl Phenyl 4.824 4.209 3.984 3.845 3.798

34* 1 (S)-4-Cl-phenyl Phenyl 3.569 4.043 3.972 3.928 3.714

35 1 (S)-4-F-phenyl Phenyl 3.244 3.831 3.538 3.920 3.738

36* 1 (R/S)-3,5 diCl-phenyl Phenyl 4.046 4.253 4.238 3.817 3.910

37 2 (R/S)-3,5 diCl-phenyl Phenyl 3.959 4.251 4.243 3.817 3.915

* stands for a member of the test set; cala obtained from the best r2
m result of ANN (Model 6); calb obtained from the best r2

m result of GFA-

MLR (Equation 11); calc obtained from the best r2
m result of stepwise regression (Equation 7); cald obtained from the best r2

m result of PLS

(Equation 8)

QSAR on piperidines as CCR5 antagonists 207

Jo
ur

na
l o

f 
E

nz
ym

e 
In

hi
bi

tio
n 

an
d 

M
ed

ic
in

al
 C

he
m

is
tr

y 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 o
f 

So
ut

h 
C

ar
ol

in
a 

on
 1

2/
25

/1
1

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



modeling using artificial neural network. For the

development of classical type QSAR models, topolo-

gical, structural, physicochemical, spatial and elec-

tronic descriptors were used. At first topological and

structural descriptors were utilized to develop 2D

models using multiple linear regressions (with step-

wise regression and factor analysis as variable selection

techniques) and partial least squares. Then structural,

physicochemical, spatial and electronic descriptors

were combined to build models using the same

techniques. Finally, in search of better predictive

models, topological parameters were combined with

structural, physicochemical, spatial and electronic

descriptors and models were developed. For the

development of 3D models molecular shape analysis

descriptors were combined with structural, physico-

chemical, spatial and electronic descriptors. All

descriptors were calculated using Cerius2 version 10

[26] running under IRIX 6.5 operating system on

a Silicon Graphics computer and are shown categori-

cally in Table V. In this study, topological descriptors

considered were Balaban index (Jx), Kappa shape

indices, Zagreb, Wiener, connectivity indices and

E-state indices. Molecular weight (MW), numbers of

rotatable bonds (Rotlbonds), number of hydrogen

bond donors and acceptors and number of chiral

centers were used as structural descriptors. Physico-

chemical descriptors used in the study include AlogP,

AlogP98, LogP, MR and MolRef. Spatial descriptors

like RadOfGyration, Jurs, Shadow, Area, Density, Vm

and electronic parameters like charge, Fcharge, Apol,

HOMO, LUMO and Sr were used in the study.

DIFFV, COSV, Fo, NCOSV and ShapeRMS were

employed as molecular shape analysis descriptors to

develop 3D QSAR models. A full list of descriptors is

given in Table V and their definitions can be found

Table II. Structure and CCR5 binding affinities of non-spiro piperidine derivatives.

Y

N

R1

N

CH3

S

OO

R2

Structural Features Anti-HIV Activity (-logIC50(mM))

Sl. No. R1 R2 Y obs cala calb calc cald

38 Phenyl (R/S)-Phenyl ZCHZ 3.921 3.552 3.732 3.931 3.737

39 Phenyl (R/S)-2-Cl-phenyl ZCHZ 2.523 3.518 3.322 3.895 3.839

40* Phenyl (S)-3-Cl-phenyl ZCHZ 4.523 3.659 3.709 3.887 3.864

41 Phenyl (S)-4-F-phenyl ZCHZ 3.000 3.522 3.505 3.828 3.767

42* Phenyl (R/S)-3,5-diCl-phenyl ZCHZ 3.523 3.632 3.798 3.740 3.973

43 Phenyl (R/S)-3-F-phenyl ZCHZ 4.000 3.505 3.344 3.895 3.762

44* Phenyl (R/S)-3-Me-phenyl ZCHZ 4.097 3.717 3.832 3.824 3.885

45* Phenyl (R/S)-3-Et-phenyl ZCHZ 3.959 3.815 3.895 4.141 4.098

46 Phenyl (R/S)-3-CF3-phenyl ZCHZ 3.301 3.828 3.736 3.949 3.935

47 Phenyl (R/S)-4-Me-phenyl ZCHZ 3.699 3.764 3.932 3.910 3.894

48* Phenyl (R/S)-3,5-di-Me-phenyl ZCHZ 3.796 3.802 3.954 3.939 4.021

49* Phenyl (R/S)-3,4-di-F-phenyl ZCHZ 3.244 3.161 3.207 4.026 3.724

50 Phenyl (R/S)-3,4-di-Me-phenyl ZCHZ 4.222 3.761 3.974 3.890 4.015

51 Phenyl (R/S)-3-Me-4-F-phenyl ZCHZ 3.745 3.806 3.571 4.010 3.902

52 Phenyl (R/S)-3-F-4-Me-phenyl ZCHZ 3.959 3.853 3.867 3.760 3.923

53 Phenyl 3-Cl-phenyl ZNZ 3.155 3.720 3.724 4.054 3.836

54* 2-Methyl-phenyl 3-Cl-phenyl ZNZ 2.620 3.704 3.840 3.896 3.946

55 2-Methyl-phenyl 3-Cl-phenyl ZCHZ 3.398 3.868 3.924 3.883 3.984

56 2-MeO-phenyl 3-Cl-phenyl ZCHZ 4.155 4.166 3.819 4.335 4.211

57 3-CF3-phenyl 3-Cl-phenyl ZCHZ 3.921 4.041 4.216 4.057 4.115

58* 4-Cl-phenyl 3-Cl-phenyl ZCHZ 3.699 3.846 4.026 3.850 3.996

59 4-F-phenyl 3-Cl-phenyl ZCHZ 4.602 3.774 3.877 3.917 3.924

60 Benzyl 3-Cl-phenyl ZCHZ 3.602 3.839 3.822 3.825 4.080

61 C6H5CH2CH2 3-Cl-phenyl ZCHZ 4.187 3.937 4.237 3.993 4.318

62 C6H5CH2CH2CH2 3-Cl-phenyl ZCHZ 5.301 4.209 4.553 4.338 4.573

* stands for a member of the test set; cala obtained from the best r2
m result of ANN (Model 6); calb obtained from the best r2

m result of GFA-

MLR (Equation 11); calc obtained from the best r2
m result of stepwise regression (Equation 7); cald obtained from the best r2

m result of PLS

(Equation 8)
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at the Cerius2 tutorial available at the website http://

www.accelrys.com.

Cluster analysis and validation

The main target of any QSAR modeling is that the

developed model should be robust enough to be

capable of making accurate and reliable predictions of

biological activities of new compounds. So, QSAR

models which are developed from training set should be

validated using new chemical entities for checking the

predictive capacity of the developed models.

The validation strategies check the reliability of the

developed models for their possible application on a new

set of data, and confidence of prediction can thus be

judged [27]. For maximum cases, appropriate external

data set is not available for prediction purpose. That is

why the original data set is divided into training and test

sets. A model’s predictive accuracy and confidence for

different unknown chemicals varies according to how

well the training set represents the unknown chemicals

and how robust the model is in extrapolating beyond the

chemistry space defined by the training set. So, the

selection of the training set is significantly important in

QSAR analysis. Predictive potential of a model on the

new data set is influenced by the similarity of chemical

nature between training set and test set [28–30].

The test set molecules will be predicted well when these

molecules are very similar to the training set

compounds. The reason is that the model has

represented all features common to the training set

molecules. There are different techniques available for

division of the data set into training and test sets like

statistical molecular design, self-organizing map, clus-

tering, Kennard-Stone selection, sphere exclusion, etc.

[31]. In the present case we have used clustering

technique as the method for training set selection.

Cluster analysis [32] is a technique toarrange the objects

into groups. This method divides different objects into

groups in such a way that the degree of association

between two objects is maximum if they possess same

group and otherwise minimum. There are two types of

clustering: i) hierarchical clustering and ii) non-

hierarchical clustering. One of the important non-

hierarchical techniques is K-means clustering [33]

which has been used in the present study. In this

method clusters are started randomly and then cluster

means are calculated in descriptor space. Molecules are

reassigned to clusters whose means are closer to the

position of molecules. After clustering, the test set

compounds are selected from each cluster because both

test set and training set can represent all clusters and

characteristics of the whole dataset.

In our study the whole data set was divided into

training and test sets based on K-means clustering and

the models developed the training set were externally

validated using test set. During internal validation the

models were crossvalidated using leave-one-out

Table III. Structure and CCR5 binding affinities of spiro piperidine derivatives.

X

Z

Y

N

N

CH3

S

Cl

OO

Structural Features Anti-HIV Activity (2 logIC50(mM))

Sl. No. X Y-Z obs cala calb calc cald

63 -e ZCH2CH2Z 3.745 3.834 3.611 3.956 3.686

64* -e ZNHCH2Z 4.301 3.852 3.813 3.877 3.776

65 -e ZC(O)CH2Z 5.301 3.809 3.745 4.085 3.671

66 -e ZC(O)NHZ 4.347 4.027 4.073 4.009 3.726

67 -e ZC(O)N(Me) 4.000 4.016 3.943 3.854 3.796

68 -e ZC(O)NHCH2Z 4.456 4.060 4.204 4.113 3.862

69 -e ZNHC(O)CH2Z 4.456 4.145 4.401 3.890 3.886

70 -e ZCH(OH)CH2Z 4.000 4.029 4.280 3.952 3.899

71 ZCH2Z ZOZ 3.585 3.632 3.586 3.427 3.703

* stands for a member of the test set; cala obtained from the best r2
m result of ANN (Model 6); calb obtained from the best r2

m result of GFA-

MLR (Equation 11); calc obtained from the best r2
m result of stepwise regression (Equation 7); cald obtained from the best r2

m result of PLS

(Equation 8); eThe X in these structures is a single bond
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Table IV. Structure and CCR5 binding affinities of piperidine derivatives.

N

NX

R1

O

R2

N

S

CH3

OO

Y

Structural Features Anti-HIV Activity (2 logIC50(mM))

Sl. No. R1 R2 X Y obs cala calb calc cald

72 Me H O H 3.000 3.612 3.720 4.017 3.823

73 t-Bu H O H 3.000 3.902 4.063 3.332 4.225

74 t-Bu Et O H 4.523 4.640 4.580 4.137 4.562

75* Me Me O H 3.824 3.957 3.586 4.071 3.944

76 Me Et O H 4.398 4.108 4.121 4.216 4.143

77 Me n-Pr O H 4.699 4.199 4.257 4.492 4.405

78 Me n-Bu O H 4.824 4.634 4.449 4.598 4.628

79 Me n-C6H13 O H 5.000 4.792 4.776 5.170 5.123

80 Me c-C6H11ZCH2 O H 5.222 4.841 4.363 4.694 4.840

81* Me Bn O H 4.000 4.869 4.476 4.862 4.731

82 Et c-C6H11ZCH2 O H 4.456 4.705 4.634 4.728 5.109

83 Bn c-C6H11ZCH2 O H 3.097 5.026 5.010 5.258 5.446

84* Et Et O H 4.398 4.370 4.221 4.516 4.408

85 t-Bu Et O H 4.602 4.609 4.760 3.877 4.564

86 c-C6H11ZCH2 Et O H 4.824 5.060 4.791 4.796 4.957

87* Ph Et O H 5.000 4.756 4.608 4.955 4.752

88 Bn Et O H 5.699 5.017 4.879 5.070 4.834

89 Bn Et O Cl 5.699 5.324 4.924 5.283 5.011

90 Bn Me O H 5.301 4.917 4.834 4.856 4.653

91* Bn n-Pr O H 5.699 5.134 5.101 5.179 5.190

92 Bn n-Pr O Cl 5.398 5.501 5.269 5.445 5.219

93 Bn n-Bu O H 5.301 5.329 5.116 5.237 5.341

94 Bn Allyl O H 5.824 5.264 5.410 5.220 5.181

95* 2-Me-C6H4ZCH2 n-Pr O H 5.398 5.191 4.952 5.141 5.156

96 3-Me-C6H4ZCH2 n-Pr O H 5.523 5.239 4.943 4.968 5.191

97 4-Me-C6H4ZCH2 n-Pr O H 5.523 5.503 5.518 5.402 5.358

98 4-CF3ZC6H4ZCH2 n-Pr O H 5.222 5.049 4.887 4.914 5.202

99 4-NO2ZC6H4ZCH2 n-Pr O H 5.824 5.330 5.185 5.288 5.262

100 4-NO2ZC6H4ZCH2 Allyl O H 5.699 5.740 5.684 5.605 5.486

101* 4-NO2ZC6H4-CH2 Allyl O Cl 5.699 5.967 6.184 5.669 5.579

102 3-NH2COC6H4ZCH2 n-Pr O H 6.097 5.951 6.041 5.667 5.653

103 4-NH2COC6H4ZCH2 n-Pr O H 5.699 5.545 5.718 5.596 5.572

104 4-NH2COC6H4ZCH2 n-Pr O Cl 5.523 5.670 5.835 5.627 5.680

105 Bn n-Pr O H 5.699 5.165 5.080 5.300 5.142

106 Me H NH H 3.000 3.768 3.894 3.938 3.856

107 Me Et NH H 3.921 4.159 4.097 4.257 4.180

108* Bn H NH H 4.000 4.351 4.798 4.672 4.535

109 Bn n-Pr NH H 5.602 5.344 5.649 5.695 5.193

110 Ph n-Pr NH H 5.398 4.969 5.150 5.027 5.001

111 Bn n-Pr N-Me H 4.699 5.166 5.627 5.222 5.267

112* (S)-a-Me-Bn n-Pr NH H 4.125 5.026 5.245 5.360 5.147

113* 4-NO2-Bn Allyl NH H 6.125 5.731 6.041 6.011 5.461

114* Me Et – H 3.921 4.188 4.255 4.276 4.167

115 Ph n-Pr – H 4.000 4.852 5.214 4.958 4.975

116 Bn n-Pr – H 5.523 5.180 5.201 5.258 5.186

117 PhOCH2 n-Pr – H 5.398 5.397 5.349 5.410 5.486

118* PhCH2CH2 n-Pr – H 4.699 5.104 5.419 5.489 5.468

119 4-NO2-Bn Allyl – H 5.699 5.471 5.672 5.803 5.240

* stands for a member of the test set; cala obtained from the best r2
m result of ANN (Model 6); calb obtained from the best r2

m result of GFA-MLR

(Equation 11); calc obtained from the best r2
m result of stepwise regression (Equation 7); cald obtained from the best r2

m result of PLS (Equation 8)
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method. At first all independent variables were

standardized between 0 and 1. All molecules with

standardized descriptors were classified into six

clusters based on K-means clustering. Serial numbers

of compounds under different clusters were shown in

Table VI. From these six clusters 75% of the total

compounds were selected as training set and remain-

ing 25% were selected as test set.

For the development of equations different chemo-

metric tools were utilized.

Stepwise regression

In this method an initial model is identified and then it

is repeatedly altered by adding or removing a predictor

variable according to the “stepping criteria” (in this

study F ¼ 4 for inclusion and F ¼ 3.9 for exclusion

for the forward selection method) [34]. The search is

terminated when stepping is no longer possible or

when a specified maximum number of steps has been

reached. Specifically, at each step all variables are

evaluated to determine the most contributing pre-

dictor to the equation. The method selected for

stepwise regression is forward selection and backward

elimination. The criteria “F to Enter” and “F to

Remove” determine how significant or insignificant

respectively the contribution of a variable in the

regression equation for adding the term to the

equation and removing from the equation.

PLS

For PLS, “leave-one-out” method was used for

crossvalidation to obtain the optimum number of

components. PLS is a useful technique for construc-

ting predictive models when the factors are many (e.g.,

greater than the number of observations) and they are

highly collinear. This technique [35] generalizes and

combines features from principal component and

multiple regression. In the development of models

there are many factors which contribute to the model.

But some of them have capability to change the

response largely and others have very low contribution

to the response. So, the primary target of PLS

regression is to find out those latent factors which are

responsible for large variation in the response. In this

present data set, the variables with smaller coefficients

based on standardized regression coefficients were

removed from the PLS regression, until there was no

further improvement in Q 2 value, irrespective of the

components. To avoid overfitting, the significance of

each consecutive PLS component is examined and it is

stopped when the components are non-significant.

FA-MLR

Factor analysis [36,37] is a statistical procedure used

to disclose relationships among many variables.

It allows large numbers of intercorrelated variables

to be condensed into fewer dimensions, called factors.

It is a data processing step to identify the variables

contributing to the response variable. In our study

biological activity data of the training set and all

descriptors were extracted by principle component

method and rotated by VARIMAX rotation to obtain

Thurston’s simple structure. The effective variables

were selected from rotated component matrix

obtained from the previous operation. Linear

regression was performed using these variables.

Table V. Categorical list of descriptors used in the development of models.

Category of Descriptors Name of the Descriptors

Topological Jx, 1k, 2k, 3k, 1kam, 2kam, 3kam, F, SC-0, SC-1, SC-2, SC-3_P, SC-3_C, 0x, 1x, 2x, 3xp, 3xc,
0xv, 1xv, 2xv, 3xv

p,
3xv

c, Wiener, Zagreb, S_sCH3, S_dCH2, S_ssCH2, S_dsCH, S_aaCH, S_sssCH, S_dssC, S_aasC, S_aaaC, S_ssssC, S_sNH2,

S_ssNH, S_aaN, S_sssN, S_ddsN, S_aasN, S_sOH, S_dO, S_ssO, S_ssS, S_aaS, S_dssS, S_ddssS, S_sF, S_sCl.

Structural MW, Rotlbonds, Hbond acceptor, Hbond donor, Chiral centers.

Physicochemical AlogP, AlogP98, LogP, MR, MolRef.

Spatial RadOfGyration, Jurs_SASA, Jurs_PPSA_1, Jurs_PNSA_1, Jurs_DPSA_1, Jurs_PPSA_2, Jurs_PNSA_2,

Jurs_DPSA_2, Jurs_PPSA_3, Jurs_PNSA_3, Jurs_DPSA_3, Jurs_FPSA_1, Jurs_FNSA_1, Jurs_FPSA_2,

Jurs_FNSA_2, Jurs_FPSA_3, Jurs_FNSA_3, Jurs_WPSA_1, Jurs_WNSA_1, Jurs_WPSA_2, Jurs_WNSA_2,

Jurs_WPSA_3, Jurs_WNSA_3, Jurs_RPCG, Jurs_RNCG, Jurs_RPCS, Jurs_RNCS, Jurs_TPSA, Jurs_TASA,

Jurs_RPSA, Jurs_RASA, Shadow_XY, Shadow_XZ, Shadow_YZ, Shadow_XYfrac, Shadow_XZfrac,

Shadow_YZfrac, Shadow_nu, Shadow_Xlength, Shadow_Ylength, Shadow_Zlength, Area, Vm, Density,

PMI_mag

Electronic Charge, Fcharge, Apol, Dipole-mag, HOMO, LUMO, Sr.

Molecular Shape DIFFV, COSV, Fo, NCOSV, ShapeRMS.

Table VI. Serial numbers of compounds under different clusters.

Cluster No. Serial Numbers of Compounds

1 1; 26; 31; 38; 39; 40; 41; 42; 43; 44; 45; 46; 47; 48;

49; 50; 51; 52; 53; 54; 55; 56; 57; 58; 59; 60; 61;

62; 63; 64; 65; 66; 67; 68; 69; 70; 71.

2 79; 80; 81; 82; 83; 86; 87; 88; 89; 90; 91; 92; 93;

94; 95; 96; 97; 105; 108; 109; 110; 111; 112; 115;

116; 117; 118.

3 98; 99; 100; 101; 102; 103; 104; 113; 119.

4 2; 4; 6; 7; 8; 9; 10; 11; 12; 13; 14; 17; 18; 19; 20;

21; 22; 23; 24; 25; 27; 29; 32; 34; 35.

5 3; 5; 15; 16; 28; 30; 33; 36; 37.

6 72; 73; 74; 75; 76; 77; 78; 84; 85; 106; 107; 114.
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Molecular shape analysis [38]

Molecular shape analysis (MSA) was used as a 3D-

QSAR technique. In our study the steps to perform

MSA were i) generation of conformers and energy

minimization, ii) hypothesizing an active conformer

(global minimum of the most active compound), iii)

selecting a shape reference compound based on active

conformation, iv) performing pair-wise molecular

shape superimposition using maximum common

subgroup (MCSG) method, v) measurement of

molecular shape commonality using MSA descriptors,

vi) determination of other molecular features by

calculating structural, spatial, physicochemical and

electronic parameters, vii) selection of conformers and

viii) generation of QSAR equations by linear genetic

function approximation (GFA) followed by multiple

linear regression. Attempt was also made to

develop nonlinear models using Artificial Neural

Network (ANN). Multiple conformations of every

molecule were generated using optimal search as a

conformational search method. Conformers of each

molecule were subjected to energy minimization

procedure to generate a low energy conformation for

each structure. Energy minimization had been

performed using a smart minimizer under open force

field (OFF). Maximum common subgroup (MCSG)

method was used for alignment of molecules. This

method searches the largest subset of atoms in the

atoms in the shape reference compound that is shared

by all the structures in the study table and uses this

subset for alignment. A rigid fit of atom pairings was

performed to superimpose each structure so that it

overlays the shape reference compound.

Genetic function approximation-multiple linear regression

Genetic algorithms [39] are derived from an analogy

with the mutation of DNA. This algorithm was

initially imagined from i) Holland’s genetic algorithm

and ii) Friedman’s multivariate adaptive regression

splines (MARS) algorithm. In this algorithm an

individual or model is represented as a linear string

in which information about DNA (the series of basis

functions) of that individual or model is stored. Based

on this information the activity model is reconstructed

using least-squares regression to regenerate the

coefficients. Genetic algorithm makes superior models

to those developed using stepwise regression tech-

niques because genetic algorithm contains additional

information about the models. A “fitness function or

lack of fit (LOF)” is used to estimate the quality of an

individual, so that best individual receives the best

fitness score. The error measurement term LOF is

determined by the following equation:

LOF ¼
LSE

1 2 cþdp
M

� �2

In the above equation, c is the number of basis

functions (other than constant term); d is smoothing

parameter (adjustable by the user); M is number of

samples in the training set; LSE is least squares error

and p is total numbers of features contained in all basis

functions.

Once models in the population have been rated using

the LOF score, the genetic cross over operation is

repeatedly performed. Individual (or model) with best

fitness score is considered as potential member to

transmit its genetic material for mutation, in which

some parts of genetic material are taken from each

parent and recombined to create the child. After many

mating steps average fitness of individuals (models) in

the population increases as good combinations of genes

are discovered and spread through the population.

It can build not only linear models but also higher-

order polynomials, splines and Gaussians. But in our

present work, splines were not used. Descriptors,

which were selected by this algorithm, were subjected

to multiple linear regression for generation of models.

Artificial neural network [40]

Artificial Neural Network (ANN) is an information-

processing pattern that is inspired by the way

biological nervous systems, such as the brain, process

information. Maximum networks contain at least

three layers - input, hidden and output. The layers of

input neurons receive the data either from input files

or directly from electronic sensors in real-time

applications. The output layer sends information

directly to the outside world, to a secondary computer

process or to other devices such as a mechanical

control system. Between input and output layers there

may be many hidden layers. These internal layers

contain many of the neurons in various interconnected

structures. Based on the function there are different

types of neural networks like feed-forward back-

propagation, counter propagation, probabilistic

neural network, self-organizing map etc. But here in

the present study for the development of our nonlinear

models, feed-forward backpropagation method was

used. Multilayer perceptron (MLP) method under

“Custom Network Designer” had been selected to

design the network. In the first phase backpropagation

method was selected for formation of the network

using training set. The error term, i.e., difference

between output of the network and the desired output

is back propagated to the transfer function (sigmoid

function) for adjustment of weight. The output [41]

can be represented as by the following equation.

Oj ¼ f ðijÞ ¼
1

1 þ expð2bijÞ

where Oj is the output of node j and b is a gain, being

able to adjust the form of the function. Usually b
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is taken as 1. Using the error signal to adjust the

connected weights, the following adjusted weights are

obtained for the output layer.

Wij ðnewÞ ¼ Wij ðoldÞ þ hdiOj þ a½DWij ðoldÞ�

In backpropagation method the learning of the

network has followed the Delta Rule, which starts

with the calculated difference between the actual

outputs and the desired outputs. Using this error,

connection weights are increased in proportion to the

error times a scaling factor for global accuracy.

The complex part of this learning mechanism is for

the system to determine which input contributed the

most to an incorrect output and how does that

element get changed to correct the error. During the

learning process, a forward sweep is made through the

network, and the output of each element is computed

layer by layer. The difference between the output of

the final layer and the desired output is back--

propagated to the previous layer until the input layer is

reached. In 2nd phase conjugate gradient descent was

used. This method is a good secondary and advanced

method of training multilayer perceptron. It is

generally used for the network of large numbers of

weights and/or multiple output units. It is a batch

update algorithm whereas back propagation adjusts

the weights of the network. Learning rate and

momentum of each epoch are adjusted and weight

decay is regularized. Crossvalidated resampling of

advanced technique was used as sampling procedure

during formation of network. When a particular

number of resampling is selected, the numbers of

available cases are divided into 3 subsets (training,

selection and test sets). Training subset is used to

optimize the network. The second subset, i.e.,

selection set is used to prevent the training from

becoming over learned. Finally, a test subset is used to

estimate the performance of that network.

Although the use of a test subset set allows us to

generate unbiased performance estimates, these esti-

mates may exhibit high variance. Ideally, one would like

to repeat the training procedure a number of different

times, each time using new training, selection and test

cases drawn from the population - then, one could

average the performance prediction over the different

test subsets, to get a more reliable indicator of

generalization performance. In reality, one seldom has

enough data to perform a number of training runs with

entirely separate training, selection and test subsets.

Model quality

The statistical performances of the multiple regression

equations [42] were evaluated by different parameters

like square of correlation coefficient (R 2), explained

variance (Ra
2), standard error of estimate (s) and variance

ratio (F) at specified degrees of freedom (df). All

accepted MLR equations have regression coefficients

and F ratios significant at 95% and 99% levels

respectively, if not stated otherwise. The generated

QSAR equations were validated by leave-one-out or

LOO statistics [43,44] and cross-validation R 2 (Q 2)

and predicted residual sum of squares (PRESS) values

were reported. In case of external validation,

predictive capacity of a model was judged by its

application for prediction of test set activity values and

calculation of predictive R2 (R2
pred) value.

Softwares

MINTAB [45] was used for cluster analysis, stepwise

regression and PLS. SPSS [46] was utilized in the

operation of FA-MLR and STATISTICA [47] was

used for ANN. Cerius2 version 4.10 [26] was used for

MSA and GFA analyses.

Results and discussion

Classical type QSAR

QSAR using topological and structural descriptors

Stepwise regression. The following equation was

obtained using F criterion (F ¼ 4 for inclusion;

F ¼ 3.9 for exclusion).

pIC50 ¼ 3:278 þ 4:090ð^3:072Þ2k

2 1:570ð^2:777Þ3kam

2 0:700ð^1:337ÞS_ssCH2
ð1Þ

nTraining ¼ 90;R2 ¼ 0:566;R2
adj ¼ 0:551;

F ¼ 37:370;F max ¼ 15:990; s ¼ 0:600;

Q2 ¼ 0:510;PRESS ¼ 34:981; nTest ¼ 29;

R2
pred ¼ 0:504:

In the above equation, three variables were selected for

development of the model. All regression coefficients

are significant at 95% confidence level and the

corresponding confidence intervals are mentioned

within parentheses. The above equation could explain

55.1% of the variance of the CCR5 binding affinity

while the leave-one-out predicted variance was 51.0%.

The positive coefficient of the kappa shape index of 2nd

order indicates that the CCR5 binding affinity

increases with increment of branching whereas kappa

alpha-modified shape index of 3rd has negative impact

on the affinity. Contribution of the covalent radii and

hybridization states are considered in the kappa alpha-

modified shape index. The negative coefficient of the

E-state index (S_ssCH2
) shows that both the electronic
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character and topological environment of carbon atom

in the fragment –CH2 are responsible for lowering the

CCR5 binding affinity. Equation (1) contains 3

independent variables whereas total numbers of

observations are 90. According to Eriksson et al. [28]

number of compounds should be at least 5 times higher

than the number of selected independent variables. So,

this model maintains the recommended ratio. When a

multiple linear regression model has been developed

from a large pool of variables then critical F test can be

used to judge its significance [48,49]. The reason is that

an effect known as “selection bias” makes the resulting

model more significant than they really are. According

to Livingstone and Salt, a critical F 5% value should be

used to judge the significance of MLR models

constructed by best subset selection and the critical

value (F max ) is calculated as follows [49]:

F max ¼
29:96n3:18N 0:21

p0:82
e ln ðv2Þ½1:06 ln ðv2Þ20:97 ln ðnÞ23:97�

In the above equation, p is the number of predictor

variables used in a MLR equation, k is the total number

of variables from which the p variables have been chosen

and n is the number of compounds. For Equation (1),

the values of p, k and n are 3, 56 and 90 respectively. N is

defined as k!/(p!(k 2 p)!) and v2 is the second degree of

freedom of the F-statistics, i.e., n-p-1. For Equation (1),

Fmax is calculated tobe15.990 whereas theF valueof the

equation is 37.370. Thus, Equation (1) passes the

critical F test. When Equation (1) was used for

prediction of the CCR5 binding affinity of the

compounds that were not used for model development,

the predictive R 2 (R2
pred) value was found to be 0.504.

PLS. In case of PLS, the following equation was

developed from seven independent variables with one

component selected by crossvalidation.

pIC50 ¼3:366 þ 0:3711kþ 0:3562kþ 0:2863k

þ 0:3292kam þ 0:306fþ 0:367Wiener

þ 0:280Rotlbonds ð2Þ

nTraining ¼ 90;R2 ¼ 0:511;R2
adj ¼ 0:506;

F ¼ 92:060; s ¼ 0:349;

Q2 ¼ 0:488;PRESS ¼ 36:552;

nTest ¼ 29;R2
pred ¼ 0:565:

Equation (2) could explain and predict 50.6% and

48.8% respectively of the variance of the CCR5 binding

affinity. Here, the results of crossvalidation (internal

validation) are not encouraging (Q2 less than 0.5), but

external predictive capability of the model on the test

data set is good (R2
pred being 0.565). In this model, kappa

shape indices of 1st, 2nd, 3rd order and kappa alpha-

modified shape index of 2nd order have positive impact

on the CCR5 binding affinity. Besides these, flexibility

index, Wiener index and number of rotatable bonds

have positively influenced the biological activity.

FA-MLR. From the factor analysis on the data

matrix consisting of the CCR5 binding affinity with

topological and structural descriptors, it was observed

that 10 factors could explain the data matrix to the

extent of 95.135%. The anti-HIV activity was

moderately loaded with factor 2 (loaded in 2k, 3k,
2kam, 3kam, F, S_sCH3, S_aasC, Rotlbond) and weakly

loaded with factor 1 (loaded in Jx, SC_1, SC_3_P,

SC_3_C, 2x, 3xc,
0xv, 1xv, 2xv, 3xp

v, Zagreb, S_sssCH,

S_do, MW), factor 3 (loaded in S_aaCH), factor 4

(loaded in S_ssssC), factor 5 (loaded in S_dCH2), factor 9

(loaded in S_ssCH2), factor 11 (loaded in S_aaaC, S_aaN),

factor 13 (loaded in S_ssS), factor 15 (loaded in Sr) and

factor 16 (loaded in S_sCl). Based on the factor analysis,

the following variables were selected for multiple linear

regression. The best equation evolved was as follows:

pIC50 ¼ 3:489 þ 2:473ð^0:952Þ2k

2 0:682ð^1:354ÞS_sF

2 0:942ð^1:367ÞS_ssCH2
ð3Þ

nTraining ¼ 90;R2 ¼ 0:561;R2
adj ¼ 0:546;

F ¼ 36:630;Fmax ¼ 15:990; s ¼ 0:604;

Q2 ¼ 0:514;PRESS ¼ 34:708; nTest ¼ 29;

R2
pred ¼ 0:470:

Equation (3) involved three descriptors explaining and

predicting 54.6% and 51.4% respectively of the

variance of the CCR5 binding affinity. But the

predictive capacity of the model on the test data set

was not satisfactory (R2
pred being less than 0.5).

According to the Pearson Correlation method there

was no significant intercorrelation within these vari-

ables [Intercorrelation table not shown]. The critical

Fmax value for Equation (3) calculated according to

Livingstone and Salt [49] is 15.990. The F value of

Equation (3) being 36.630, this equation passes the

critical F value test.

QSAR using structural, physicochemical, spatial

and electronic descriptors

Stepwise regression. Using structural, physicochem-

ical, spatial and electronic descriptors, the following
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equation was obtained with six independent variables

(F ¼ 4 for inclusion; F ¼ 3.9 for exclusion).

pIC50 ¼ 4:455 þ 1:700ð^1:916ÞMR

2 1:780ð^1:623ÞA logP98

þ 1:680ð^2:001ÞJurs_SASA

2 0:950ð^1:212ÞHbonddonor

2 2:280ð^2:554ÞShadow_YZfrac

þ 1:730ð^2:474ÞShadow_XZfrac ð4Þ

nTraining ¼ 90;R2 ¼ 0:628;R2
adj ¼ 0:602;

F ¼ 23:390;F max ¼ 42:108; s ¼ 0:565;

Q2 ¼ 0:562;PRESS ¼ 31:287; nTest ¼ 29;

R2
pred ¼ 0:438:

Like Equation (1), all regression coefficients were

significant at 95% confidence level and the correspond-

ing confidence intervals were mentioned within par-

entheses. This model could explain 60.2% and predict

56.2% of the variance of the CCR5 binding affinity.

The external prediction ability of Equation (4) is not

encouraging (R2
pred being 43.8%). According to this

model, the CCR5 binding affinity increases with

increase in molar refractivity and decrease in partition

coefficient values. The value of Jurs_SASA is calculated

by mapping atomic partial charges on total solvent

accessible surface areas of individual atoms. This

descriptor has positively influenced the CCR5 binding

affinity of the piperidine derived compounds. Again,

with increase in the number of the hydrogen-bond

donors, the binding affinity decreases as evidenced from

the negative coefficient of the parameter Hbonddonor.

Fractionof the areaofmolecular shadow in the XZplane

has positive impact on the activity whereas the effect of

fraction of area of molecular shadow in the YZ plane is

detrimental. Though the model has maintained the ratio

of 1:5 [28] between the numbers of descriptors and the

numbers of observations but it is unable to fulfill the

criterion of the critical F test [49].

PLS. In case of PLS regression, Equation (5) with

seven independent variables and one component

(optimized with crossvalidation) was obtained.

pIC50 ¼ 3:197 þ 0:410MRþ 0:419Jurs_SASA

þ 0:374Jurs_PPSA_2

þ 0:372Jurs_WPSA_2 þ 0:364Area

þ 0:368Vm þ 0:292Rotlbonds ð5Þ

nTraining ¼ 90;R2 ¼ 0:508;R2
adj ¼ 0:503;

F ¼ 91:010; s ¼ 0:351;

Q2 ¼ 0:480;PRESS ¼ 37:138; nTest ¼ 29;

R2
pred ¼ 0:571:

Like Equation (4), molar refractivity (MR) and

Jurs_SASA show positive coefficients in this model.

Besides this, Jurs_PPSA_2 (total charge weighted

positive surface area: partial positive solvent acces-

sible surface area multiplied by the total positive

charge) and Jurs_WPSA_2 (surface-weighted

charged partial surface area) show positive coeffi-

cients in the model. Increase in the number of

rotatable bonds also improves the binding affinity.

The positive coefficient of Area (van der Waals area

of a molecule) indicates that exposing capacity of

molecules to external environment is conducive for

the CCR5 binding affinity. This descriptor is related

to binding, transport and solubility. Similarly,

molecular volume (Vm) has positive effect to the

response variable. This model could explain 50.3%

of variance of the affinity. It also could predict 48%

of variance of the affinity (internal validation). But

predictive potential on the test set is significant

(R2
pred being 0.571). The quality of Equation (5) is

also better than that of Equation (2).

FA-MLR. In this case, three factors could

explain the data matrix to the extent of 95.590%.

The CCR5 binding affinity was highly loaded

with factor 2 (loaded in MR, MolRef, Jurs_SASA,

Jurs_PPSA_2, Jurs_DPSA_2, Jurs_FPSA_2, Jurs_

WPSA_1, Jurs_WPSA_2, Jurs_RPCG, Jurs_RNCG,

Jurs_TASA, Shadow_XY, Shadow_YZ, Area, Vm,

Rotlbond), moderately loaded with factor 12 (loaded

in HOMO) and poorly loaded with factor 5 (loaded

in Shadow_XZfrac, Shadow_YZfrac, Shadow_nu,

Shadow_Zlength). Using structural, physicochem-

ical, spatial and electronic descriptors, FA-MLR led

to an equation which was inferior in statistical

quality to that of stepwise regression and PLS

derived equations. All regression coefficients were

significant at 95% confidence level and the corre-

sponding confidence intervals were mentioned within

parentheses.

pIC50 ¼ 3:796 þ 2:293ð^1:147ÞMR

2 0:924ð^1:542ÞShadow_YZfrac ð6Þ

nTraining ¼ 90;R2 ¼ 0:498;R2 ¼ 0:486;F ¼ 43:080;

F max ¼ 12:865; s ¼ 0:642;
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Q2 ¼ 0:466;PRESS ¼ 38:124; nTest ¼ 29;R2
pred

¼ 0:434:

This equation could explain and predict 48.6% and

46.6% respectively of variance of the CCR5 binding

affinity. Like Equations (4) and (5), here molar

refractivity (MR) has showed positive influence to the

CCR5 binding affinity. The fraction of area of

molecular shadow in the YZ plane is unfavorable for

the CCR5 binding affinity. According to Pearson

Correlation method molar refractivity is weakly

correlated with Shadow_YZfrac [r ¼ 20.280]. This

model passes the critical F test recommended by

Livingstone and Salt [49] as the value of variance ratio

crosses the critical Fmax value.

QSAR using combined (topological, structural,

physicochemical, spatial and electronic) set of descriptors

Stepwise regression. Equation (7) consisting of 3

independent variables was developed from stepwise

regression. Here, the combined pool of descriptors

was subjected to F criterion (F ¼ 4 for inclusion;

F ¼ 3.9 for exclusion) to get an equation in a stepwise

manner.

pIC50 ¼ 3:674 þ 4:130ð^3:066Þ2k

2 1:920ð^2:767Þ3kam

2 0:800ð^1:477ÞShadow_YZfrac ð7Þ

nTraining ¼ 90;R2 ¼ 0:567;R2
adj ¼ 0:552;

F ¼ 37:600;F max ¼ 20:801; s ¼ 0:599;

Q2 ¼ 0:530;PRESS ¼ 33:591; nTest ¼ 29;

R2
pred ¼ 0:549:

The 95% confidence intervals of independent

variables were mentioned within parentheses.

The positive coefficient of kappa shape index of 2nd

order and negative coefficient of alpha-modified kappa

shape index of 3rd order are obtained similar to

Equation (1). This model showed 55.2% explained

and 53% predicted variances which were inferior to

corresponding results of Equation (4) obtained from

stepwise regression excluding topological descriptors.

However, predictive potential of Equation (7) on the

test set was superior to that of Equation (4) (R2
pred

value of Equation (7) being 0.549 compared to

corresponding value of 0.438 for Equation (4)]. This

model also passes the critical F test recommended by

Livingstone and Salt [49].

PLS. The following PLS equation consisting of

seven independent variables was obtained with one

component.

pIC50 ¼ 3:283 þ 0:3552kþ 0:3282kam þ 0:305f

þ 0:391MR

þ 0:279Rotlbondsþ 0:400Jurs_SASA

þ 0:355Jurs_WPSA_2 ð8Þ

nTraining ¼ 90;R2 ¼ 0:515;R2
adj ¼ 0:509;

F ¼ 93:520; s ¼ 0:346;

Q2 ¼ 0:490;PRESS ¼ 36:443; nTest ¼ 29;

R2
pred ¼ 0:580:

Like previous Equations (Equations (2) and (5)), this

equation contains positive coefficients of kappa shape

index of 2nd order, kappa alpha-modified shape index

of 2nd order, flexibility index ( ), molar refractivity

(MR), number of rotatable bonds (Rotlbonds),

Jurs_SASA and Jurs_WPSA_2. This model could

explain and predict 50.9% and 49% of the variance of

the CCR5 binding affinity. Both of these statistics are

better than those of two previous PLS results

(Equations (2) and (5)). In fact, predictive potential

of this Equation (R2
pred) on the test chemical entities is

also superior to those of Equations (2) and (5).

FA-MLR. The following FA-MLR equation was

obtained with only one variable. In this model only

kappa shape index of 2nd order has been selected

based on factor loading pattern.

pIC50 ¼ 3:272 þ 2:256ð^0:933Þ2k ð9Þ

nTraining ¼ 90;R2 ¼ 0:512;R2
adj ¼ 0:506;

F ¼ 92:340;F max ¼ 12:186; s ¼ 0:629;

Q2 ¼ 0:490;PRESS ¼ 36:408; nTest ¼ 29;

R2
pred ¼ 0:526:

Though the results of explained variance and

predicted variance of Equation (9) were inferior to

those of Equation (3), predictive capacity (R2
pred) on

the test data set was better than those of both

Equations (3) and (6). It passes the F test as the F

value is greater than the critical Fmax value [49].

A Comparative study of statistical parameters of

classical QSAR models using different descriptors is

given in Table VII.
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3D QSAR

In order to gain further insight into the structure-

activity relationships, additional study was made

using molecular shape analysis. This study was

conducted using MSA descriptors along with

additional descriptors like structural, physicochem-

ical, spatial and electronic parameters. We have

developed two types of models: i) linear (using

genetic unction approximation combined with mul-

tiple linear regression) and ii) nonlinear (artificial

neural network). To develop 3D QSAR models, the

training data set compounds were aligned (shown in

Figure 1) to the shape reference compound (com-

pound 102) as detailed in the Materials and Methods

section.

The following two Equations (Equations 10-11)

were among the best ones based on LOF score

obtained from genetic function approximation (50000

iterations) combined with multiple linear regression;

however, none of these equations contain any MSA

descriptor.

pIC50 ¼ 3:764 2 4:184MW

þ 3:538Jurs_PNSA_1 þ 5:809Area

2 1:815A logP98 2 0:641Hbonddonor ð10Þ
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Figure 1. Aligned view of the training set molecules.
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nTraining ¼ 90;R2 ¼ 0:614;R2
adj ¼ 0:591;

F ¼ 26:760;F max ¼ 34:463;

s ¼ 0:573;LOF ¼ 0:387;

Q2 ¼ 0:550;PRESS ¼ 32:152; nTest ¼ 29;

R2
pred ¼ 0:505:

Equation (10) suggests that the CCR5 binding

affinity decreases with increase in molecular weight,

partition coefficient and number of hydrogen bond

donor groups. Again positive impacts of Area and

Jurs descriptor (Jurs_PNSA_1) are observed. Jurs_

PNSA_1 is partial negative surface area which is sum

of the solvent-accessible surface areas of all negatively

charged atoms. The explained variance and predicted

variance are 59.1% and 55%. The predictive R 2

value is found to be 0.505.

pIC50 ¼ 3:554 2 3:598MW

þ 2:959Jurs_PNSA_1 þ 5:159Area

2 1:260A logP98 ð11Þ

nTraining ¼ 90;R2 ¼ 0:593;R2
adj ¼ 0:574;

F ¼ 30:990;F max ¼ 24:798;

s ¼ 0:585;LOF ¼ 0:389;

Q2 ¼ 0:537;PRESS ¼ 33:075; nTest ¼ 29;

R2
pred ¼ 0:520:

Equation (11) is similar to Equation (10), only

lacking the term Hbonddonor. The removal of this

term decreases R2 and Q2 values, but the R2
pred value

increases. Although both of the models (Equations 10

and 11) has maintained the ratio of 1:5 [28] between

the number of descriptors and the number of

observations, Equation 10 does not satisfy the criteria

of the critical F value due to large pool of selected

independent variables [49]. The absence of MSA

descriptors in the models indicate that 3D QSAR

could not provide better models over Classical type

QSAR for this data set.

A Comparative study of statistical parameters of the

GFA-MLR models is given in Table VIII.

Nonlinear modeling

For the development of better predictive models,

nonlinear modeling with artificial neural network was

also tried. We have formed the network with the

training set using backpropagation in the 1st phase

and conjugate gradient descent in the 2nd phase.

The developed network was used to estimate the

biological activity of the test set compounds. Using

different iterations of backpropagation and conjugate

gradient descent, varying numbers of hidden layers

and units per layer, a number of models were

developed. In this study certain numbers of

iterations, hidden layers, elements per layer etc.

were selected. Then the number of a particular

parameter was changed by fixing the other par-

ameters. Here we have presented 6 best networks

using different iterations and different hidden layers

in Table IX. In the best network (bold faced model

based on the squared correlation coefficient between

the observed and predicted values of the test set

compounds), 3 hidden layers of 43, 39, 36 elements

respectively were used. Numbers of iterations

selected for backpropagation and conjugate gradient

descent were 700 and 300 respectively. Initialization

method selected for network was random uniform.

Weight decay was regularized in both phases (decay

factor ¼ 0.01, scale factor ¼ 1). Learning rate and

momentum of each epoch were adjusted to 0.01 and

0.3 respectively. The number of crossvalidated

resampling was set to 20. During 20 resampling,

numbers of cases selected for training, selection and

test were 56, 26 and 4 respectively.

Further tests on external predictability

To know performance of the prediction, squared

correlation coefficient values between the observed and

predicted values of the test set compounds with

intercept (r2) and without intercept (r0
2) were calcu-

lated. These values of all models have been represented

in Tables X, XI and XII. All the models (except first two

Table VIII. Comparative study of statistical parameters of GFA-MLR models using different descriptors.

Type of Descriptors Eq. No.

R2

(Training Set)

Ra2

(Training Set)

Q2

(Training Set) LOF F s

R2
pred

(Test Set)

MSA þ Structural þ

physicochemical þ

spatial þ electronic

10 0.614 0.591 0.550 0.387 26.760 0.573 0.505

11 0.593 0.574 0.537 0.389 30.990 0.585 0.520
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ANN models) have satisfied the requirement of the

value of (r2 2 r0
2)/r2 being less than 0.1 as rec-

ommended by Golbraikh and Tropsha [50]. According

to Golbraikh and Tropsha [49], models are considered

acceptable, if they satisfy all of the following conditions:

(i) Q 2 . 0.5, (ii) r 2 . 0.6, (iii) r0
2 or r /0

2 is close to r 2,

such that [(r2 2 r0
2)/ r2] or [(r2 2 r/

0
2)/ r2] , 0.1 and

0.85 # k #1.15 or 0.85 # k/ #1.15. When the

observed values of the test set compounds (Yaxis) are

plotted against the predicted values of the compounds

(X axis) setting intercept to zero, slope of the fitted line

gives the value of k. Interchange of the axes gives the

value of k/. A list of values of k/ and k for different

models is given in Table XIII.

Moreover, R2
predvalue is mainly controlled by the

value ofðYtest 2 �YtrainingÞ
2, i.e., the difference between

observed value of test set and mean of training data

set. Thus, it may not truly reflect the predictive

capability on new dataset. Besides squared regression

coefficient (r2) between observed and predicted values

of the test set compounds does not necessarily mean

that the predicted values are very near to observed

activity (there may be considerable numerical differ-

ence between the values though maintaining an overall

good intercorrelation). To better indicate external

predictive capacity of a model a modified r2 term (r2
m)

was been defined in the following manner [51]

r2
m ¼ r 2 1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2 2 r2

o

q���
���

� �

In case of good external prediction predicted values

will be very close to observed activity values. So, r2

value will be very near to r2
o value. In the best case r2

m

will be equal to r2 whereas in the worst case r2
m value

will be zero. Here, the r2
m values of Equations 3, 10 and

11 and first two models of ANN are less than the

recommended value (0.5). The best r2
m value is

obtained from the ANN model 6 (Table XIV).

Overview

Different statistical methods like stepwise regression,

PLS and FA-MLR have been applied to model

CCR5 binding affinity of piperidine derivatives using

different combinations of topological, structural,

physicochemical, spatial and electronic descriptors

to develop classical type QSAR models. Using

topological and structural parameters the best

equation based on internal validation was obtained

Table IX. Comparative study of best two network using different hidden layers.

Model

No.

No. of

Hidden

Layer

No. of units in 3

different layers

No. of cross

validated

resampling

No. of epoch in backpropaga-

tion followed by conjugate

gradient descent

Absolute

Error

Mean

Correlation Coefficient (r2)

between Obs. and Pred. values

of the test set

1 3 40 38 36 10 500, 200 0.482 0.634

2 3 43 39 36 20 700, 300 0.403 0.683

3 2 43 39 10 500, 200 0.369 0.659

4 2 43 39 15 800, 300 0.373 0.638

5 1 43 20 700, 400 0.387 0.641

6 1 43 25 700, 400 0.377 0.635

Table X. Comparison of external predictability characteristics of different models obtained from the training set using classical QSAR.

Type of Descriptors Statistical Method r2 r2
o (r2 2 r2

o)/r2 r2
m

Topological þ structural Stepwise 0.553 0.544 0.016 0.502

PLS 0.578 0.577 0.001 0.562

FA-MLR 0.535 0.526 0.018 0.483

Structural þ physicochemical þ spatial þ electronic Stepwise 0.578 0.563 0.027 0.506

PLS 0.591 0.589 0.003 0.564

FA-MLR 0.517 0.516 0.002 0.500

Topological þ structural þ physicochemical þ spatial þ electronic Stepwise 0.592 0.591 0.003 0.568

PLS 0.609 0.604 0.008 0.566

FA-MLR 0.5473 0.5472 6.94E-06 0.546

Table XI. Comparison of external predictability characteristics of different GFA-MLR models.

Type of Descriptors Model No. r2 r2
o (r2 2 r2

o)/r2 r2
m

MSA þ Structural þ physicochemical þ spatial þ electronic 1 0.581 0.551 0.052 0.480

2 0.572 0.555 0.029 0.480
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with FA-MLR (Q 2 ¼ 0.514). But predictive potential

of this model on the test chemicals was not

satisfactory (R2
pred ¼ 0:470). According to the exter-

nal validation statistics, the best model have been

reported using PLS (R2
pred ¼ 0.565). However, this

model produced insignificant Q 2 value (0.488). Only

the stepwise regression derived model has given both

acceptable Q 2 (0.510) and R2
pred (0.504) values.

When structural, physicochemical, spatial and elec-

tronic descriptors were used in combination, the best

Q 2 value (0.562) was obtained from the stepwise

regression derived model. But here also the external

validation parameter (R2
pred) is not satisfactory.

The only significant R2
pred value came from PLS

(R2
pred ¼ 0.571). Next, topological descriptors were

combined with other (structural, physicochemical,

spatial and electronic) descriptors in search of better

predictive models. In this case, the best Q 2 and R2
pred

values obtained were 0.530 (stepwise regression) and

0.580 (PLS regression) respectively. On using

topological descriptors along with other descriptors,

predictive R2 value increased marginally (PLS

model). In case of the 3D-QSAR study, linear

models have been tried to develop from genetic

function approximation using MSA descriptors in

combination with structural, electronic, physico-

chemical and spatial descriptors. Although Equation

(10) with five descriptors gave the best explained (Ra
2

¼ 0.591) and predicted variance (Q 2 ¼ 0.550) of the

CCR5 binding affinity along with lowest LOF score

among the GFA models, higher predictive R2 (R2
pred

¼ 0.520) was obtained in case of Equation (11) with

four descriptors. None of these two equations contain

MSA descriptors and their quality (explained

variance, crossvalidated R2 and predicted R2) is not

better than those of the best models obtained from

classical QSAR approach. In search of better

predictive models, nonlinear modeling was per-

formed with artificial neural network. The models

showed acceptable value of squared correlation

coefficient for the observed and predicted values of

the test set compounds. Further statistical validation

was performed as recommended by Golbraikh and

Tropsha [50] and Roy and Roy [51]. All models

except first two models of ANN have satisfied the

criteria of (r2 2 r0
2)/r2 value being less than 0.1. When

r2
m test was been performed, Equations 3, 10 and 11

and first two models of ANN did not pass the test.

The best r2
m value is obtained from the ANN model 6

(Table XIV). The scatter plots of observed versus

predicted values of the test set compounds for five

selected models using different techniques based on

best r2
m values are shown in Figure 2.

Conclusion

Among the classical QSAR models, the best model

was obtained with stepwise regression using combi-

nation of structural, physicochemical, electronic and

spatial descriptors based on internal validation while

the best model based on external validation was

obtained from PLS using combination of topological

and other (structural, physicochemical, electronic

and spatial) descriptors. The 3D-QSAR linear

models did not provide any better result over the

classical QSAR models with respect to both internal

and external validations. However, when nonlinear

mapping technique was applied to the set of 3D-

QSAR descriptors, the best model based on modified

r2 (r2
m) value was developed using one hidden layer.

Table XII. Comparison of external predictability characteristics of

different ANN models.

Model No. r2 r2
o (r2 2 r2

o)/r2 r2
m

1 0.634 0.560 0.117 0.461

2 0.683 0.548 0.198 0.432

3 0.659 0.637 0.034 0.560

4 0.638 0.632 0.011 0.586

5 0.641 0.634 0.011 0.586

6 0.6352 0.6350 0.0003 0.627

Table XIII. Calculated values of k and k/ for different models as

defined by Golbraikh and Tropsha [49].

k/ k

Stepwise Regression (Equation 1) 1.0268 0.9593

PLS (Equation 2) 1.0144 0.9721

FA-MLR (Equation 3) 1.0323 0.9536

Stepwise Regression (Equation 4) 1.0529 0.9361

PLS (Equation 5) 1.0176 0.9695

FA-MLR (Equation 6) 1.0404 0.9459

Stepwise Regression (Equation 7) 1.0286 0.9592

PLS (Equation 8) 1.0213 0.9664

FA-MLR (Equation 9) 1.0188 0.967

GFA-MLR (Equation 10) 1.0295 0.9571

GFA-MLR (Equation 11) 1.025 0.9614

ANN (Model 1) 1.0425 0.9454

ANN (Model 2) 0.9746 1.0109

ANN (Model 3) 1.0097 0.9786

ANN (Model 4) 1.0156 0.9727

ANN (Model 5) 1.0164 0.9721

ANN (Model 6) 1.0209 0.9678

Table XIV. Comparison of best r2
m between observed and

predicted values of the test set compounds using different

techniques.

Statistical Methods r2
m value

Stepwise Regression (Equation 7) 0.568

PLS (Equation 8) 0.566

FA-MLR (Equation 9) 0.546

GFA-MLR (Equation 11) 0.480

ANN (Model 6) 0.627
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This confirms that nonlinear modeling outperforms

the external predictability of linear models for this

data set.
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